automated_readability_index(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)coleman_liau(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)SMOG(text.var, grouping.var = NULL, output = "valid", rm.incomplete = FALSE, ...)flesch_kincaid(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)fry(text.var, grouping.var = NULL, rm.incomplete = FALSE, auto.label = TRUE, grid = FALSE, div.col = "grey85", plot = TRUE, ...)linsear_write(text.var, grouping.var = NULL, rm.incomplete = FALSE, ...)
NULL
generates
one output for all text. Also takes a single grouping variable or a list of 1
or more grouping variables.TRUE
removes incomplete sentences
from the analysis.TRUE
labels automatically added. If
FALSE
the user clicks interactively.TRUE
a micro grid is displayed, similar to
Fry's original depiction, though this may make visualizing more difficult.TRUE
a graph is plotted corresponding to Fry's
graphic representation.end_inc
.Returns a list of 2 dataframes: (1) Counts and (2) Readability.
Counts are the raw scores used to calculate readability score and can be
accessed via counts
. Readability is the dataframe
with the selected readability statistic by grouping variable(s) and can be
access via scores
. The fry
function
returns a graphic representation of the readability as the
scores
returns the information for graphing but not a
readability score.
automated_readability_index
- Apply Automated Readability Index to
transcript(s) by zero or more grouping variable(s).
coleman_liau
- Apply Coleman Liau Index to transcript(s) by zero or
more grouping variable(s).
SMOG
- Apply SMOG Readability to transcript(s) by zero or more grouping variable(s).
flesch_kincaid
- Flesch-Kincaid Readability to transcript(s) by zero or more
grouping variable(s).
fry
- Apply Fry Readability to transcript(s) by zero or more
grouping variable(s).
linsear_write
- Apply Linsear Write Readability to transcript(s) by
zero or more grouping variable(s).
Many of the indices (e.g., Automated Readability Index) are derived from word difficulty (letters per word) and sentence difficulty (words per sentence). If you have not run the sentSplit function on your data the results may not be accurate.
The fry
function is based on Fry's formula that randomly
samples 3 100 word length passages. If a group(s) in does not contain 300+
words they will not be included in the output.
Coleman, M., & Liau, T. L. (1975). A computer readability formula designed for machine scoring. Journal of Applied Psychology, Vol. 60, pp. 283-284.
Fry, E. B. (1968). A readability formula that saves time. Journal of Reading, 11(7), 513-516, 575?578.
Fry, E. B. (1969). The readability graph validated at primary levels. The Reading Teacher, 22(6), 534-538.
Flesch R. (1948). A new readability yardstick. Journal of Applied Psychology. Vol. 32(3), pp. 221-233. doi: 10.1037/h0057532.
Gunning, T. G. (2003). Building Literacy in the Content Areas. Boston: Allyn & Bacon.
McLaughlin, G. H. (1969). SMOG Grading: A New Readability Formula. Journal of Reading, Vol. 12(8), pp. 639-646.
Smith, E. A. & Senter, R. J. (1967) Automated readability index. Technical Report AMRLTR-66-220, University of Cincinnati, Cincinnati, Ohio.
## <strong>Not run</strong>: # AR1 <- with(rajSPLIT, automated_readability_index(dialogue, list(person, act))) # ltruncdf(AR1,, 15) # scores(AR1) # counts(AR1) # plot(AR1) # plot(counts(AR1)) # # AR2 <- with(rajSPLIT, automated_readability_index(dialogue, list(sex, fam.aff))) # ltruncdf(AR2,, 15) # scores(AR2) # counts(AR2) # plot(AR2) # plot(counts(AR2)) # # AR3 <- with(rajSPLIT, automated_readability_index(dialogue, person)) # ltruncdf(AR3,, 15) # scores(AR3) # head(counts(AR3)) # plot(AR3) # plot(counts(AR3)) # # CL1 <- with(rajSPLIT, coleman_liau(dialogue, list(person, act))) # ltruncdf(CL1, 20) # head(counts(CL1)) # plot(CL1) # # CL2 <- with(rajSPLIT, coleman_liau(dialogue, list(sex, fam.aff))) # ltruncdf(CL2) # plot(counts(CL2)) # # (SM1 <- with(rajSPLIT, SMOG(dialogue, list(person, act)))) # plot(counts(SM1)) # plot(SM1) # # (SM2 <- with(rajSPLIT, SMOG(dialogue, list(sex, fam.aff)))) # # (FL1 <- with(rajSPLIT, flesch_kincaid(dialogue, list(person, act)))) # plot(scores(FL1)) # plot(counts(FL1)) # # (FL2 <- with(rajSPLIT, flesch_kincaid(dialogue, list(sex, fam.aff)))) # plot(scores(FL2)) # plot(counts(FL2)) # # FR1 <- with(rajSPLIT, fry(dialogue, list(sex, fam.aff))) # scores(FR1) # plot(scores(FR1)) # counts(FR1) # plot(counts(FR1)) # # FR2 <- with(rajSPLIT, fry(dialogue, person)) # scores(FR2) # plot(scores(FR2)) # counts(FR2) # plot(counts(FR2)) # # FR3 <- with(pres_debates2012, fry(dialogue, list(time, person))) # colsplit2df(scores(FR3)) # plot(scores(FR3), auto.label = FALSE) # counts(FR3) # plot(counts(FR3)) # # library(ggplot2) # ggplot(colsplit2df(counts(FR3)), aes(sent.per.100.wrds, # syllables.per.100.wrds)) + # geom_point(aes(fill=person), shape=21, size=3) + # facet_grid(person~time) # # LW1 <- with(rajSPLIT, linsear_write(dialogue, list(person, act))) # plot(scores(LW1)) # plot(counts(LW1)) # # LW2 <- with(rajSPLIT, linsear_write(dialogue, list(sex, fam.aff))) # plot(scores(LW2), method="lm") # plot(counts(LW2)) # ## <strong>End(Not run)</strong>