Dissimilarity(text.var, grouping.var = NULL, method = "prop", diag = FALSE, upper = FALSE, p = 2, ...)
NULL
generates
one word list for all text. Also takes a single grouping variable or a list
of 1 or more grouping variables.dist
function).
If "prop"
(the default) the result is 1 - "binary"
.TRUE
returns the diagonals of the matrix. If
method = "prop"
diagonals will not be returned.TRUE
returns the upper triangle of the
matrix.wfm
.Returns a matrix of dissimilarity values (the agreement between text).
Uses the distance function to calculate dissimilarity statistics by grouping variables.
## <strong>Not run</strong>: # with(DATA, Dissimilarity(state, list(sex, adult))) # with(DATA, Dissimilarity(state, person, diag = TRUE)) # # ## Clustering: Dendrogram # (x <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time)))) # fit <- hclust(x) # plot(fit) # ## draw dendrogram with red borders around the 3 clusters # rect.hclust(fit, k=3, border=c("red", "purple", "seagreen")) # # ## Clustering: Dendrogram with p.values # library(pvclust) # wfm.mod <- with(pres_debates2012, wfm(dialogue, list(person, time))) # fit <- suppressMessages(pvclust(wfm.mod, method.hclust="ward", # method.dist="euclidean")) # plot(fit) # pvrect(fit, alpha=.95) # # ## Multidimentional Scaling # ## Based on blog post from Bodong Chen # ## http://bodongchen.com/blog/?p=301 # # ## Fit it: 2-D # (diss <- with(pres_debates2012, Dissimilarity(dialogue, list(person, time), # method = "euclidean"))) # fit <- cmdscale(diss, eig = TRUE, k = 2) # # ## Plot it 2-D # points <- data.frame(x = fit$points[, 1], y = fit$points[, 2]) # ggplot(points, aes(x = x, y = y)) + # geom_point(data = points, aes(x = x, y = y, color = rownames(points))) + # geom_text(data = points, aes(x = x, y = y - 0.2, label = row.names(points))) # # ## Fit it: 3-D # library(scatterplot3d) # fit <- cmdscale(diss, eig = TRUE, k = 3) # # points <- data.frame(colSplit(names(fit$points[, 1]))) # library(qdapTools) # points$colors <- points$X1 %l% data.frame(levels(points$X1), # qcv(yellow, yellow, blue, yellow, red, yellow)) # points$shape <- points$X2 %l% data.frame(levels(points$X2), c(15, 17, 19)) # # ## Plot it: 3-D # scatterplot3d(fit$points[, 1], fit$points[, 2], fit$points[, 3], # color = points$colors, pch = points$shape, # main = "Semantic Space Scaled to 3D", xlab = "x", ylab = "y", # zlab = "z", type = "h") # # legend("bottomright", title="Person", # qcv(Obama, Romney, Other), fill=qcv(blue, red, yellow)) # legend("topleft", paste("Time", 1:3), pch=c(15, 17, 19)) # # ## Compare to Cosine Similarity # cos_sim <- function(x, y) x %*% y / sqrt(x%*%x * y%*%y) # mat <- matrix(rbinom(500, 0:1, .45), ncol=10) # v_outer(mat, cos_sim) # # v_outer(with(DATA, wfm(state, person)), cos_sim) # with(DATA, Dissimilarity(state, person)) # ## <strong>End(Not run)</strong>
dist