Search For and Count Terms

Usage

termco(text.var, grouping.var = NULL, match.list, short.term = TRUE, ignore.case = TRUE, elim.old = TRUE, percent = TRUE, digits = 2, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = NULL, zero.replace = 0, ...)
termco_d(text.var, grouping.var = NULL, match.string, short.term = FALSE, ignore.case = TRUE, zero.replace = 0, percent = TRUE, digits = 2, apostrophe.remove = FALSE, char.keep = NULL, digit.remove = TRUE, ...)
term_match(text.var, terms, return.list = TRUE, apostrophe.remove = FALSE)
termco2mat(dataframe, drop.wc = TRUE, short.term = TRUE, rm.zerocol = FALSE, no.quote = TRUE, transform = TRUE, trim.terms = TRUE)

Arguments

text.var
The text variable.
grouping.var
The grouping variables. Default NULL generates one word list for all text. Also takes a single grouping variable or a list of 1 or more grouping variables.
match.list
A list of named character vectors.
short.term
logical. If TRUE column names are trimmed versions of the match list, otherwise the terms are wrapped with 'term(phrase)'
ignore.case
logical. If TRUE case is ignored.
elim.old
logical. If TRUE eliminates the columns that are combined together by the named match.list.
percent
logical. If TRUE output given as percent. If FALSE the output is proportion.
digits
Integer; number of decimal places to round when printing.
apostrophe.remove
logical. If TRUE removes apostrophes from the text before examining.
char.keep
A character vector of symbol character (i.e., punctuation) that strip should keep. The default is to strip everything except apostrophes. termco attempts to auto detect characters to keep based on the elements in match.list.
digit.remove
logical. If TRUE strips digits from the text before counting. termco attempts to auto detect if digits should be retained based on the elements in match.list.
zero.replace
Value to replace 0 values with.
match.string
A vector of terms to search for. When using inside of term_match the term(s) must be words or partial words but do not have to be when using termco_d (i.e., they can be phrases, symbols etc.).
terms
The terms to search for in the text.var. Similar to match.list but these terms must be words or partial words rather than multiple words and symbols.
return.list
logical. If TRUE returns the output for multiple terms as a list by term rather than a vector.
dataframe
A termco (or termco_d) dataframe or object.
drop.wc
logical. If TRUE the word count column will be dropped.
rm.zerocol
logical. If TRUE any column containing all zeros will be removed from the matrix.
no.quote
logical. If TRUE the matrix will be printed without quotes if it's character.
transform
logical. If TRUE the matrix will be transformed.
trim.terms
logical. If TRUE trims the column header/names to ensure there is not a problem with spacing when using in other R functions.
...
Other argument supplied to strip.

Value

termco & termco_d - both return a list, of class "termco", of data frames and information regarding word counts: rawraw word counts by grouping variable propproportional word counts by grouping variable; proportional to each individual's word use rnpa character combination data frame of raw and proportional zero_replacevalue to replace zeros with; mostly internal use percentThe value of percent used for plotting purposes. digitsinteger value of number of digits to display; mostly internal use

term_match - returns a list or vector of possible words that match term(s).

termco2mat - returns a matrix of term counts.

Description

termco - Search a transcript by any number of grouping variables for categories (themes) of grouped root terms. While there are other termco functions in the termco family (e.g., termco_d) termco is a more powerful and flexible wrapper intended for general use.

termco_d - Search a transcript by any number of grouping variables for root terms.

term_match - Search a transcript for words that exactly match term(s).

termco2mat - Convert a termco dataframe to a matrix for use with visualization functions (e.g., heatmap.2).

Note

The match.list/match.string is (optionally) case and character sensitive. Spacing is an important way to grab specific words and requires careful thought. Using "read" will find the words "bread", "read" "reading", and "ready". If you want to search for just the word "read" you'd supply a vector of c(" read ", " reads", " reading", " reader"). To search for non character arguments (i.e., numbers and symbols) additional arguments from strip must be passed.

Warning

Percentages are calculated as a ratio of counts of match.list elements to word counts. Word counts do not contain symbols or digits. Using symbols, digits or small segments of full words (e.g., "to") could total more than 100%.

Examples

## <strong>Not run</strong>: # #termco examples: # # term <- c("the ", "she", " wh") # (out <- with(raj.act.1, termco(dialogue, person, term))) # # plot(out) # scores(out) # plot(scores(out)) # counts(out) # plot(counts(out)) # proportions(out) # plot(proportions(out)) # # # General form for match.list as themes # # # # ml <- list( # # cat1 = c(), # # cat2 = c(), # # catn = c() # # ) # # ml <- list( # cat1 = c(" the ", " a ", " an "), # cat2 = c(" I'" ), # "good", # the = c("the", " the ", " the", "the") # ) # # (dat <- with(raj.act.1, termco(dialogue, person, ml))) # scores(dat) #useful for presenting in tables # counts(dat) #prop and raw counts are useful for performing calculations # proportions(dat) # datb <- with(raj.act.1, termco(dialogue, person, ml, # short.term = FALSE, elim.old=FALSE)) # ltruncdf(datb, 20, 6) # # (dat2 <- data.frame(dialogue=c("@bryan is bryan good @br", # "indeed", "@ brian"), person=qcv(A, B, A))) # # ml2 <- list(wrds=c("bryan", "indeed"), "@", bryan=c("bryan", "@ br", "@br")) # # with(dat2, termco(dialogue, person, match.list=ml2)) # # with(dat2, termco(dialogue, person, match.list=ml2, percent = FALSE)) # # DATA$state[1] <- "12 4 rgfr r0ffrg0" # termco(DATA$state, DATA$person, '0', digit.remove=FALSE) # DATA <- qdap::DATA # # #Using with term_match and exclude # exclude(term_match(DATA$state, qcv(th), FALSE), "truth") # termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th), # FALSE), "truth")) # MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks)) # termco(DATA$state, DATA$person, MTCH.LST) # # syns <- synonyms("doubt") # syns[1] # termco(DATA$state, DATA$person, unlist(syns[1])) # synonyms("doubt", FALSE) # termco(DATA$state, DATA$person, list(doubt = synonyms("doubt", FALSE))) # termco(DATA$state, DATA$person, syns) # # #termco_d examples: # termco_d(DATA$state, DATA$person, c(" the", " i'")) # termco_d(DATA$state, DATA$person, c(" the", " i'"), ignore.case=FALSE) # termco_d(DATA$state, DATA$person, c(" the ", " i'")) # # # termco2mat example: # MTCH.LST <- exclude(term_match(DATA$state, qcv(a, i)), qcv(is, it, am, shall)) # termco_obj <- termco(DATA$state, DATA$person, MTCH.LST) # termco2mat(termco_obj) # plot(termco_obj) # plot(termco_obj, label = TRUE) # plot(termco_obj, label = TRUE, text.color = "red") # plot(termco_obj, label = TRUE, text.color="red", lab.digits=3) # # ## REVERSE TERMCO (return raw words found per variable) # df <- data.frame(x=1:6, # y = c("the fluffy little bat" , "the man was round like a ball", # "the fluffy little bat" , "the man was round like a ball", # "he ate the chair" , "cough, cough"), # stringsAsFactors=FALSE) # # l <- list("bat" ,"man", "ball", "heavy") # z <- counts(termco(df$y, qdapTools::id(df), l))[, -2] # # counts2list(z[, -1], z[, 1]) # # ## politness # politness <- c("please", "excuse me", "thank you", "you welcome", # "you're welcome", "i'm sorry", "forgive me", "pardon me") # # with(pres_debates2012, termco(dialogue, person, politness)) # with(hamlet, termco(dialogue, person, politness)) # # ## Term Use Percentage per N Words # dat <- with(raj, chunker(dialogue, person, n.words = 100, rm.unequal = TRUE)) # dat2 <- list2df(dat, "Dialogue", "Person") # dat2[["Duration"]] <- unlist(lapply(dat, id, pad=FALSE)) # dat2 <- qdap_df(dat2, "Dialogue") # # Top5 <- sapply(split(raj$dialogue, raj$person), wc, FALSE) %>% # sort(decreasing=TRUE) %>% # list2df("wordcount", "person") %>% # `[`(1:5, 2) # # propdat <- dat2 %&% # termco(list(Person, Duration), as.list(Top25Words[1:5]), percent = FALSE) %>% # proportions %>% # colsplit2df %>% # reshape2::melt(id=c("Person", "Duration", "word.count"), variable="Word") %>% # dplyr::filter(Person %in% Top5) # # head(propdat) # # ggplot(propdat, aes(y=value, x=Duration, group=Person, color=Person)) + # geom_line(size=1.25) + # facet_grid(Word~., scales="free_y") + # ylab("Percent of Word Use") + # xlab("Per 100 Words") + # scale_y_continuous(labels = percent) # # ggplot(propdat, aes(y=value, x=Duration, group=Word, color=Word)) + # geom_line(size=1.25) + # facet_grid(Person~.) + # ylab("Percent of Word Use") + # xlab("Per 100 Words") + # scale_y_continuous(labels = percent) # # ggplot(propdat, aes(y=value, x=Duration, group=Word)) + # geom_line() + # facet_grid(Word~Person, scales="free_y") + # ylab("Percent of Word Use") + # xlab("Per 100 Words") + # scale_y_continuous(labels = percent) + # ggthemes::theme_few() # ## <strong>End(Not run)</strong>

See also

termco_c, colcomb2class