colcomb2class(dataframe, combined.columns, class = "list", percent = TRUE, digits = 2, elim.old = TRUE, zero.replace = 0, override = FALSE)
termco
, question_type
, pos_by
, character_table
).TRUE
output given as percent. If
FALSE
the output is proportion.TRUE
eliminates the columns that are
combined together by the named match.list. TRUE
outputs the table
proportionally (see prop
).TRUE
the printing options (e.g.,
percent, digits, etc.) of the dataframe argument are overrode.Returns a list with raw counts, percents and combined raw and percents.
Combine columns from qdap classes or a data.frame
.
## `termco` example ml <- list( cat1 = c(" the ", " a ", " an "), cat2 = c(" I'" ), "good", the = c("the", " the ", " the", "the") ) dat1 <- with(raj.act.1, termco(dialogue, person, ml)) colcomb2class(dat1, list(cats = c("cat1", "cat2")))person word.count good the cats 1 Abraham 24 0 0 0 2 Benvolio 621 2(.32%) 44(7.09%) 34(5.48%) 3 Capulet 736 3(.41%) 30(4.08%) 42(5.71%) 4 First Citizen 16 0 3(18.75%) 2(12.50%) 5 First Servant 69 1(1.45%) 5(7.25%) 8(11.59%) 6 Gregory 149 0 16(10.74%) 9(6.04%) 7 Juliet 206 1(.49%) 9(4.37%) 6(2.91%) 8 Lady Capulet 286 0 21(7.34%) 20(6.99%) 9 Lady Montague 28 0 0 2(7.14%) 10 Mercutio 552 2(.36%) 46(8.33%) 49(8.88%) 11 Montague 217 1(.46%) 13(5.99%) 12(5.53%) 12 Nurse 598 2(.33%) 31(5.18%) 45(7.53%) 13 Paris 32 0 1(3.12%) 0 14 Prince 167 0 11(6.59%) 8(4.79%) 15 Romeo 1164 3(.26%) 48(4.12%) 59(5.07%) 16 Sampson 259 1(.39%) 23(8.88%) 19(7.34%) 17 Second Capulet 17 0 0 0 18 Second Servant 41 1(2.44%) 3(7.32%) 2(4.88%) 19 Servant 183 1(.55%) 12(6.56%) 13(7.10%) 20 Tybalt 160 0 10(6.25%) 12(7.50%)## `question_type` example dat2 <- question_type(DATA.SPLIT$state, DATA.SPLIT$person) combs <- list( `wh/how` = c("what", "how"), oth = c("shall", "implied_do/does/did") ) colcomb2class(dat2, combs)person tot.quest wh/how oth 1 greg 1 0 1(100%) 2 researcher 1 0 1(100%) 3 sally 2 2(100%) 0 4 teacher 1 1(100%) 0 5 sam 0 0 0## `pos_by` example dat3 <- with(DATA, pos_by(state, list(adult, sex))) colcomb2class(dat3, qcv(DT, EX, FW))adult&sex wrd.cnt IN JJ MD NN PRP PRP$ RB VB VBG VBP VBZ WP WRB 1 2 3 1 0.f 10 1(10.0%) 1(10.0%) 1(10.0%) 0 2(20.0%) 0 0 1(10.0%) 1(10.0%) 1(10.0%) 0 1(10%) 1(10%) 0 0 0 2 0.m 33 0 2(6.1%) 0 6(18.2%) 6(18.2%) 2(6.1%) 4(12.1%) 2(6.1%) 1(3.0%) 2(6.1%) 3(9.1%) 0 0 3(9.1%) 1(3.0%) 1(3.0%) 3 1.f 6 1(16.7%) 1(16.7%) 1(16.7%) 0 1(16.7%) 0 1(16.7%) 1(16.7%) 0 0 0 0 0 0 0 0 4 1.m 4 0 0 1(25.0%) 0 1(25.0%) 0 0 1(25.0%) 0 0 0 1(25%) 0 0 0 0## data.frame example dat4 <- data.frame(X=LETTERS[1:5], matrix(sample(0:5, 20, TRUE), ncol = 4)) colcomb2class(dat4, list(new = c("X1", "X4")))$raw X X2 X3 new 1 A 5 2 8 2 B 1 2 6 3 C 2 0 5 4 D 0 4 6 5 E 3 3 2 $prop X X2 X3 new 1 A 33.33333 13.33333 53.33333 2 B 11.11111 22.22222 66.66667 3 C 28.57143 0.00000 71.42857 4 D 0.00000 40.00000 60.00000 5 E 37.50000 37.50000 25.00000 $rnp X X2 X3 new 1 A 5(33.33%) 2(13.33%) 8(53.33%) 2 B 1(11.11%) 2(22.22%) 6(66.67%) 3 C 2(28.57%) 0 5(71.43%) 4 D 0 4(40.00%) 6(60.00%) 5 E 3(37.50%) 3(37.50%) 2(25.00%) $digits [1] 2 $percent [1] TRUE